157 research outputs found

    Information Flow for Security in Control Systems

    Full text link
    This paper considers the development of information flow analyses to support resilient design and active detection of adversaries in cyber physical systems (CPS). The area of CPS security, though well studied, suffers from fragmentation. In this paper, we consider control systems as an abstraction of CPS. Here, we extend the notion of information flow analysis, a well established set of methods developed in software security, to obtain a unified framework that captures and extends system theoretic results in control system security. In particular, we propose the Kullback Liebler (KL) divergence as a causal measure of information flow, which quantifies the effect of adversarial inputs on sensor outputs. We show that the proposed measure characterizes the resilience of control systems to specific attack strategies by relating the KL divergence to optimal detection techniques. We then relate information flows to stealthy attack scenarios where an adversary can bypass detection. Finally, this article examines active detection mechanisms where a defender intelligently manipulates control inputs or the system itself in order to elicit information flows from an attacker's malicious behavior. In all previous cases, we demonstrate an ability to investigate and extend existing results by utilizing the proposed information flow analyses

    Secure control against replay attacks

    Get PDF
    This paper analyzes the effect of replay attacks on a control system. We assume an attacker wishes to disrupt the operation of a control system in steady state. In order to inject an exogenous control input without being detected the attacker will hijack the sensors, observe and record their readings for a certain amount of time and repeat them afterwards while carrying out his attack. This is a very common and natural attack (we have seen numerous times intruders recording and replaying security videos while performing their attack undisturbed) for an attacker who does not know the dynamics of the system but is aware of the fact that the system itself is expected to be in steady state for the duration of the attack. We assume the control system to be a discrete time linear time invariant gaussian system applying an infinite horizon Linear Quadratic Gaussian (LQG) controller. We also assume that the system is equipped with a χ 2 failure detector. The main contributions of the paper, beyond the novelty of the problem formulation, consist in 1) providing conditions on the feasibility of the replay attack on the aforementioned system and 2) proposing a countermeasure that guarantees a desired probability of detection (with a fixed false alarm rate) by trading off either detection delay or LQG performance, either by decreasing control accuracy or increasing control effort. 1
    • …
    corecore